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Bound states in the continuum (BICs) are perfectly localized resonances despite embedding in the continuum spectrum.
However, an isolated BIC is very sensitive to the structure perturbation. Here, we report merging acoustic BICs in a single open
resonator, robust against the structure perturbation. We find that both symmetry-protected BIC and Friedrich-Wintgen BIC are
sustained in a single coupled waveguide-resonator system. By varying the height and length of the resonator, these two BICs
move toward each other and merge into a single one at a critical dimension. Compared to an individual BIC, the merged BIC is
robust against fabrication error because its Q-factor is proportional to ΔL−4, where ΔL embodies the structure perturbation. The
essence of this extraordinary phenomenon is perfectly explained by the two- and three-level approximations of the effective non-
Hermitian Hamiltonian. Finally, we present direct experimental demonstrations of the moving and merging of BICs in a coupled
3D waveguide-resonator, which are evidenced by the vanishing of the linewidth of Fano resonance in the transmission spectra.
Our results may find exciting applications in designing high-quality acoustic sources, sensors and filters.
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1 Introduction

Bound states in the continuum (BICs), also known as trapped
modes with an infinite quality factor (Q-factor), have trig-
gered extensive interest in photonic and acoustic commu-
nities [1-10]. The most straightforward mechanism of BICs

is the symmetrical incompatibility of the eigenstates of a
closed system states with propagating states of the con-
tinuum, named symmetry-protected (SP) BICs. That results
in a zero coupling of the eigenmode of the closed system
with a propagating mode of the continuum [11-14]. The SP
BICs were also found in a two-dimensional (2D) directional
waveguide with symmetrically loaded rigid circular ob-
stacles [15]. Recently, Jia et al. [16] found that SP BICs can
be supported in a coupled waveguide-resonator system as
long as the projected-plane symmetry is preserved.
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Another type of BICs is Friedrich-Wintgen (FW) BICs
[2,17,18]. The formation mechanism of FW BICs can be
attributed to the destructive interference between two modes
[17,19,20], each of which is coupled with the continuum.
The FW BICs can be realized in an open resonator by gra-
dually changing the aspect ratio of the resonator when a
degeneracy of eigenfrequencies occurs[18]. In acoustic
systems, the FW BICs were proven to exist by many re-
searchers [21-26]. The experimental evidence for the FW
BICs was reported by Lepetit and Kanté [27] and by Huang
et al. [28] in the most straightforward configuration of a
rectangular resonator opened to one attached waveguide.
Less obvious types but similar to the SP BICs are the

accidental BICs despite the absence of symmetry arguments.
The coupling between the cavity eigenmode and the mode of
the continuum can turn to zero accidentally by the variation
of the shape of the cavity as it was demonstrated in an open
Sinai billiard [29]. Such BICs were proposed by Friedrich
and Wintgen [30] in their paper on the physical realization of
BICs by placing a hydrogen atom in a magnetic field. Later,
accidental BICs were demonstrated in photonic [31-34] and
acoustic systems [25].
Although last ten years have witnessed rapid progress in

photonic BICs, acoustic BICs have been hindered by the
challenge of practical fabrication. Thanks to the advances in
three-dimensional (3D) printing technology, acoustic meta-
materials and metasurfaces can be easily fabricated [35,36],
providing unprecedented freedom of manipulating acoustic
wave propagation. Different acoustic resonances [8,37], in-
cluding Mie resonances [38,39] and membrane resonances
[40], have been demonstrated experimentally. Most of the
published research works focus on acoustic resonances with
relatively low-Q factors. Low-Q resonances are promising
for realizing broadband sound absorption [41,42]. High-Q
acoustic resonances, however, are less explored. As an un-
ique resonance, acoustic BICs have infinite Q-factors and
extreme sound trapping capability, thus providing an ex-
cellent way of realizing high-Q acoustic resonances. Re-
cently, different types of BICs have been theoretically
proposed [23,43-45] and experimentally realized
[16,25,26,28,46,47]. The largest measured Q-factor based on
quasi-BICs was reported to be 583 [28]. Notably, a high-Q
quasi-BIC is usually accompanied by the giant near field
enhancement, thus holding great promise in enhancing wave-
matter interactions, such as ultra-narrowband absorbers
[26,48], acoustic sources [49] (i.e., sound laser), and filters.
More recently, merging BICs has attracted considerable

attention because they are robust against fabrication im-
perfections, providing an excellent solution for realizing
ultrahigh-Q resonances. They have been successfully rea-
lized theoretically and experimentally in the context of di-
electric grating [50-53], a chain of dielectric spheres and
disks [54,55], and photonic crystal slabs [56-60]. However,

most of the reported merging BICs take place in the mo-
mentum space by leveraging periodic structures. A recent
work shows that such merging BICs can be achieved in a
coupled resonator-waveguide system, where two Fabry-
Perot BICs are merged into a super-BIC [61]. Unlike pho-
tonic systems, they happen in the geometrical parameter
space instead of the momentum space [52], significantly
relaxing the fabrication requirement of realizing high-Q
acoustic resonances.
This work demonstrates that merging BICs can be realized

even in a single acoustic resonator. We show that an SP BIC
and an FW BIC can be supported simultaneously in a single
coupled waveguide-resonator system with different geo-
metric dimensions. Such two BICs experience moving to-
ward each other and merging into a super-BIC as the aspect
ratio of the resonator changes. Unlike normal SP BICs and
FW BICs, the Q-factor of merged BIC is proportional to
ΔL−4, where ΔL is the structure perturbation. We also propose
a simple theory based on two- and three-level approxima-
tions of the effective non-Hermitian Hamiltonian to account
for the physical mechanism of such unique phenomena. Fi-
nally, a series of 3D acoustic coupled waveguide-resonator
structures were fabricated, and the moving and merging
BICs were demonstrated experimentally by identifying the
Fano resonance with the vanished linewidth. Our results may
pave the way for developing high-performance acoustic de-
vices requiring high-Q resonances, such as acoustic sources,
sound lasers, acoustic sensors, and filters.

2 Methods

2.1 Numerical simulations

The complex eigenvalues of all eigenmodes are performed
with the commercial software COMSOL Multiphysics. The
reflection and transmission spectra are also simulated with
COMSOL. When calculating the complex eigenvalues of
resonant modes and reflection/transmission spectrum, per-
fectly matched layer (PML) boundaries at the two ends of
waveguides are applied to mimic acoustic wave propagation
in the infinite space. The other exterior boundaries are set as
hard boundary.

2.2 Fabrication and measurement

The 3D coupled waveguide-acoustic resonators are fabri-
cated with 3D-printing technology. Reflection spectra of
these samples are measured using a Brüel & Kjær type-
4206T impedance tube with a diameter of 29 mm. The plane
wave is generated by a loudspeaker. The amplitude and
phase of local pressure are measured by four 1/4-inch con-
denser microphones (Brüel & Kjær type-4187) situated at
designated positions.
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3 Results and discussion

3.1 Merged BIC in 2D coupled acoustic resonators

We start by investigating the eigenmodes in a 2D coupled
waveguide-resonator system, as shown in Figure 1(a). For
the sake of simplicity, the waveguide width is fixed as w
=5 cm. If we fix the height of the resonator as H=12 cm but
vary the resonator width L from 11 cm to 13 cm, we found
that there are two BICs for the same eigenmode M13, whose
eigenfield distributions are shown in Figure 1(b, c). Al-
though both BICs share similar features in spatial eigen-
fields, the eigenfields near the top boundary exhibit different
distributions, namely convex and concave for the two BICs,
if we closely examine the eigenfield distributions. Further
decreasing the height of the resonator and tuning its width
simultaneously makes these two BICs approach each other
until they merge at H=10.78 cm. This exotic phenomenon
reminds us of the merging BIC in a photonic crystal slab,
where multiple topological charges tend to merge into Γ
point in the first Brillouin zone when structure parameters
are delicately tuned. However, merged BICs in the present
work happen in the geometry space instead of the momentum
space. Note that in our recent work [61], merging FP-BICs
has been found in a coupled waveguide-resonator system,

where the coupling between two identical resonators plays a
vital role in forming merging BICs. Nevertheless, such
merging BICs do exist in a single resonator. The merging
behavior is confirmed by fitting the Q-factor of BICs as a
function of structural perturbation away from the critical
position. For normal BIC, its Q-factor is proportional to ΔL−2

(ΔL=L–L0), where L0 indicates the critical width forming
BICs. For merged BIC, the Q-factor is proportional to ΔL−4.
These have been verified in Figure 1(d-f). The advantage of
merged BICs over normal BICs lies in the fact that its Q-
factor is more stable and robust against fabrication im-
perfections. We also confirmed the moving and merging
behaviors of BICs in the reflection spectra mapping in Figure
1(g-i). Note that M13 is not the only mode that shows the
merging effect on BICs. More examples can be found in the
supporting information (see Figures S1 and S2). It is also
worth pointing out that such merging BICs can be con-
structed in a single-port system by leveraging mirror effect,
as shown in Figure S3. The merging process of BICs can be
well explained from a topological perspective. Each BIC can
be linked with a pair of topological charges q=+1 and q=−1
[61-63] for a single port system. When two BICs approach
each other, the central two topological charges q=+1 and q=
−1 become close until they annihilate. Merging BICs hap-

Figure 1 (Color online) (a) Schematic illustration of a coupled waveguide-cuboid resonator system. (b, c) Eigenfield distributions of two BICs at L
=11.74 cm and L=12.605 cm with a fixed H=12 cm. (d-f) Q-factors of eigenmodes M13 versus L as H is varied from 12 cm to 10.78 cm. Note that the Q-
factors of BICs in (d, e) are proportional to ΔL−2 (ΔL=L−L0), while the Q-factor of merged BIC in (f) are proportional to ΔL−4 (ΔL=L–L0). (g-i) Reflection
mapping spectra as functions of L and frequency for H=12 cm, 11.5 cm and 10.78 cm.
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pens when these two charges annihilate. Detailed discussions
can be found in section 1 of supplementary materials and
Figures S3-S6.

3.2 Physical mechanism of the merged BICs

To explore its physical mechanism, we perform the modal
decomposition to extract the modal expansion coefficients of
eigenmodes in a closed rectangular resonator, which form the
complete orthogonal eigenbasis. Note that the eigenmodes in
a closed resonator are defined as Mmn, where m and n are the
antinode number in the press field along x-axis and y-axis,
respectively. Without loss of generality, we assume the width
of waveguide as w=1, and define Lx=L/w and Ly=H/w. By
applying the Neuman-boundary-conditions, both of the ei-
genfrequencies and eigenfunctions of these eigenmodes Mmn

can be obtained analytically,

m
L

n
L = ( 1) + ( 1) , (1a)mn

x y

2

0
2

2

2

2

2

( )( )x y L L
m x

L

n y
L

( , ) =
2 2

 cos ( 1)

×cos ( 1) , (1b)

mn
m n

x y x

y

,1 ,1

where  mn is the resonant frequency of eigenmodes Mmn,
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where v is the frequency of propgating wave, p is the anti-
node number of pressure field perpendicular to the axis of
waveguide. The eigenfunction of each BIC in a coupled-
waveguided resnator system can be decomposed as

x y a x y( , ) = ( , ), (3)BIC
mn

mn mn

where x y( , )mn is the eigenfunction of eigenmodes Mmn in a
closed resonator and amn is the modal expansion coefficient.
Figure 2(a, b) shows the modal expansion coefficients of

two BICs for structures shown in Figure 1(d), which corre-
spond to peaks of Q-factor at Lx=L/w=2.349 and Lx=L/
w=2.537. Figure 2(c) shows the case of merging BICs with
structural parameters shown in Figure 1(f). It can be clearly
seen that the eigenmode M13 of the resonator plays a pivotal
role while eigenmodes M31, M32, M33 contribute less.
We first consider merged BICs in a two-mode approx-

imation with the participation of two eigenmodes M13 and

Figure 2 (Color online) (a)-(c) Modal expansions coefficients amn of eigenmodes by performing modal decomposition on BICs shown in Figure 1 with
structural parameters given above, where m and n are antinode numbers of pressure field of mode Mmn along x-axis and y-axis, respectively. Contours of
resonance width vs sizes of the resonator in two-level approximation without (d) and with (e) account for evanescent modes. Note that the contour color
indicates the resonance linewidth. (f) The eigenfrequencies Em of the resonator that are modified by evanescent modes.
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M32. The effective Hamiltonian takes the generic form de-
scribed in Refs. [18,64]

H =
i i

i i
, (4)eff
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where v13 and v32 are the eigenfrequency of M13 and M32 in a
closed resonator. In what follows, we substitute the eigen-
frequency of BIC as this frequency.
In this description, we only keep the first open channel

p=1. The coupling constants in Eq. (5b) take the following
forms:
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Solving the effective non-Hermitian Hamiltonian matrix
gives us the complex eigenvalue z,
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2 ± +

2 i ( ) . (7)1 2 2 1 2
2

1 2

The real and imaginary parts of the eigenvalue correspond
to the resonant peak position and resonant linewidth, re-
spectively [65]. The Q-factor is defined as
Q Re z Im z= ( ) / 2 ( ). BIC happens at Im z( ) = 0 as the re-
sonance has an infinite Q-factor. That occurs for two cases,

= 01 or = 0. The first case occurs if W13, p=1=0 for Ly=2
according to Eq. (6) which clearly defines the eigenmode
M13 as the SP BIC with the normalized frequency νc=2/Ly=1.
The second case gives us the FW BIC [17,25,28,44] for
ν13=ν32 or L L= 3 / 2y x with the frequency 2/Ly. Since BICs
always happen around intesecting frequency
(L L= 3 / 2y x ), we introduce a small perturbation as

L L= 3
2 +y

x , where is a perturbation parameter close to

0. Moreover, SP BIC happens only when W13, p=1=0, corre-
sponding to Ly=2. We can apply a small perturbation by
setting Ly=2+y to study the mode property of acoustic re-
sonances nearby the critical value. To inteprete the merging
behavior of SP BICs and FW BICs, we need introduce both

perturabtions Ly=2+y and L L= 3
2 +y

x . Substituting them

into Eqs. (5) and (7) gives us
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Therefore, the eigenvalue responsible for BICs can be

presented as

z L L Ay3 + i , (9)
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where A is an irrelevant constant. Figure 2(d) shows the
contours of the imaginary part of this eigenvalue. Thus, the
merging point is the saddle point at which the SP BIC with

the Q-factor ( )Q L~ 1 / 2y
2
coalesces with the FWBIC with

( )Q L L~ 1 / 3 / 2y x
2
as plotted in Figure 2(d). However,

the frequency of SP BIC equals the cutoff frequency of
the second continuum at ν=1, while numerical simulation
shows the BICs frequencies are below the cut-off frequency.
Thus, we shall consider the evanescent modes (closed
channels), which modify the effective Hamiltonian as fol-
lows

H
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In this case, Figure 2(e) shows that the merging effect
disappears because the evanescent modes modify the Ha-
miltonian of the closed resonator

( )H u
u= . (12)m

Such a Hamiltonian gives rise to a repulsion of the former
eigenfrequencies of the closed resonator. As a result, the
eigenfrequencies cannot turn to zero and realize the FW
BICs, as seen in Figure 2(f). Notice that another combination
of the eigenmodes, for example, the modes M13 and M31 or
M13 and M33 gives rise to the same results: merging of SP
BIC and FW BIC without evanescent modes and absence of
merging with account of evanescent modes of waveguide.
Therefore, we can conclude that the widely accepted two-
level approximation of BICs is insufficient to describe the
merging of SP BICs with the FW BICs. That was shown for
consideration of multichannel BICs [66].
Indeed, modal decomposition shows in Figure 2(a-c) that

modes M31, M32, M33 contribute equally to BIC besides the
dominant contribution of M13. Therefore, we try to expand
the effective Hamiltonian by incorporating three eigenmodes
M13, M31, M32. Figure 3(a) shows that in this case two ei-
genfrequencies modified by evanescent modes are crossing
to resume the FW BIC, which merge with the SP BIC, as
illustrated in Figure 3(b). Figure 3(c, d) shows the merging in
transmission spectra mapping with a variation of the width of
the resonator. Thus, the merging BICs in an open resonator is
well captured by a three-level system.
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3.3 Experimental demonstration of merging BICs in a
3D open resonator

Next, we move to the experimental demonstration of such
merging BICs. In the actual implementation, we consider a
cylindrical waveguide with a diameter of 29 mm, and a side
resonator with a fixed width of 29 mm is attached to it. The
length Lx and height H are chosen as variables to observe the
moving BICs. Figure 4(a) shows the experimental setup of
the measurement system. It is not surprising that there are
two BICs for the same mode M113, as demonstrated in Figure
4(b, c), when we scan the length Lx at a fixed H. Moreover,
we can find that two BICs gradually approach each other
whenH varies from 52 mm to 40 mm. Here, it is necessary to
point out that further reducing H increases the resonant fre-
quency above the cut-off frequency. Thus we cannot observe
truly merging BICs in such a realistic system. However, one
can still see these two BICs become closer to each other as
we decrease H. They still show a merging effect but not in
the form of an ideal BIC. To corroborate these findings, we
fabricate a series of samples with 3D printing technology.
Figure 4(d-f) shows the measured transmission spectra
mapping as functions of frequency and Lx for H=52 mm,
48 mm, and 44 mm, respectively. To make a comparison, we
also calculate the simulated transmission spectra mapping
for these structures shown in Figure 4(g-i). Excellent
agreements can be found between experiments and simula-
tions. Besides, we indeed observe that two BICs appear at H

=52 mm, which are manifested by the resonance linewidth
vanishing. These two BICs move to each other as H de-
creases. To better visualize the position of BICs and their
moving trend, transmission spectra at different Lx for H
=52 mm, 48 mm, and 44 mm, are plotted and shown in
Figure S7.

4 Conclusion

We reveal that merging BICs can be constructed in an
acoustic open resonator by varying the aspect ratio of the
resonator. We show that two types of BICs, including SP
BICs and FW BICs, can be supported for the same mode for
a resonator with a fixed height but a varied width. They move
toward each other until they merge into a single super-BIC as
the aspect ratio of the resonator changes. The merged BICs
show better stability than the normal SP BICs and FW BICs
because their Q-factors are less sensitive to structure per-
turbations as compared to their counterparts, with an im-
provement from ΔL−2 to ΔL−4. Such an exotic phenomenon is
well explained by the two- and three-level approximations of
the effective non-Hermitian Hamiltonian. Finally, we de-
monstrate these interesting findings experimentally in a 3D
coupled waveguide-resonator system. The evolutions and
approaching of two BICs are confirmed by checking two
Fano resonances with vanished linewidth. Our results may

Figure 3 (Color online) (a) The eigenfrequencies of resonator modified by evanescent modes in the three-level description M13, M32, and M31. (b) Contours
of resonant width vs sizes of the resonator. (c) and (d) Transmittance vs length of resonator and frequency. Closed blue circles mark BICs.
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hold great promise in enhanced wave-matter interactions.
Note: Prof. Almas F. Sadreev, one of the corresponding

authors, passsed away during the review process of this
work. We would like to dedicate this work to him.
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